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Abstract
Traumatic injury strikes unexpectedly among the healthiest members of the human population, and
has been an inevitable companion of exploration throughout history. In space flight beyond the
Earth's orbit, NASA considers trauma to be the highest level of concern regarding the probable
incidence versus impact on mission and health. Because of limited resources, medical care will have
to focus on the conditions most likely to occur, as well as those with the most significant impact
on the crew and mission. Although the relative risk of disabling injuries is significantly higher than
traumatic deaths on earth, either issue would have catastrophic implications during space flight. As
a result this review focuses on serious life-threatening injuries during space flight as determined by
a NASA consensus conference attended by experts in all aspects of injury and space flight.

In addition to discussing the impact of various mission profiles on the risk of injury, this manuscript
outlines all issues relevant to trauma during space flight. These include the epidemiology of trauma,
the pathophysiology of injury during weightlessness, pre-hospital issues, novel technologies, the
concept of a space surgeon, appropriate training for a space physician, resuscitation of injured
astronauts, hemorrhage control (cavitary and external), surgery in space (open and minimally
invasive), postoperative care, vascular access, interventional radiology and pharmacology.

Given the risks and isolation inherent in long duration space flight, a well trained surgeon and/or
surgical capability will be required onboard any exploration vessel. More specifically, a broadly-
trained surgically capable emergency/critical care specialist with innate capabilities to problem-
solve and improvise would be desirable. It will be the ultimate remote setting, and hopefully one in
which the most advanced of our societies' technologies can be pre-positioned to safeguard
precious astronaut lives. Like so many previous space-related technologies, these developments
will also greatly improve terrestrial care on earth.
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Introduction
Despite significant operational and economic challenges,
the International Space Station (ISS) has been continu-
ously manned for over eight years. Although it serves pri-
marily as a human research facility in low earth orbit
(LEO), on-board medical care is extremely limited. As a
result, all patients with serious injuries will be evacuated
to earth as soon as possible. The National Aeronautic and
Space Administration (NASA) also envisions extended-
duration exploration missions beyond LEO (Exploration
Class Missions (ECM)) in the near future [1-3]. These
plans were recently supported by the outgoing President
of the United States, who stated an intention to pursue
ECMs as early as 2015. A serious traumatic injury on such
a mission would require in-flight treatment because a
return to earth in less than 9 months would be unlikely
for any manned flight to Mars [4,5]. Furthermore, in the
absence of dramatic new technological developments, the
space medicine community will continue to be limited by
logistical considerations in weight, volume, power, and
Crew Medical Officer (CMO) training [4,6].

Although the specifics of crew selection for future ECMs
are still debated, astronauts will be screened extensively
for chronic and inheritable diseases [3,7]. Unfortunately,
traumatic injury strikes unexpectedly among the healthi-
est members of the human population, and has been an
inevitable companion of exploration throughout history.
In 1994, Billica and colleagues [8] ranked traumatic injury
at the highest level of concern regarding the probable inci-
dence versus impact on mission and health. This risk
assessment reflects similar occurrences in analog space
environments [9], as well as among enlisted men aboard
US submarines where injury was both the leading cause of
morbidity and time off of duty [10].

To date the most frequent medical incidents in the NASA-
Mir orbital space program have involved minor traumatic
injuries to the skin and mucus membranes [11]. Although
numerous catastrophic deaths have occurred, there have
been no evacuations for serious trauma in space. Because
of limited resources, medical care will have to focus on the
conditions most likely to occur, as well as those with the
most significant impact on the crew and mission. Recog-
nizing that there are at least 3 disabling injuries for every
traumatic death on earth [12], any of which would have
catastrophic implications for a ECM, this review will focus
on serious life-threatening injuries. It is also implicit that
any mission equipment available for trauma care would
also have to be effective for other life-threatening general
surgical, medical, and/or gynecologic emergencies.

Space Mission Profiles and the Epidemiology of Trauma
Reviews of terrestrial trauma deaths have shown that a
limited number of conditions cause the majority of pre-

ventable injury mortality [13-15]). These issues represent
the focus of the initial resuscitative measures in the
Advanced Trauma Life Support (ATLS) course of the
American College of Surgeons. More specifically, ATLS
aims to prevent unnecessary death from airway obstruc-
tion, hemo-pneumothoraces, circulatory instability (pre-
dominantly hemorrhage), and intra-cranial hemorrhage
[12]. Although severe traumatic brain injury is the leading
specific cause of trauma deaths in North America [16],
effective treatments for primary brain injury remain lim-
ited [17]. As a result, airway obstruction, hemo-pneumot-
horaces, and bleeding are a critical focus for space trauma
planning.

The intended mission profile and crew duties will greatly
influence the relative risk and approach to treatment for
injury in space. They will also dictate complicated algo-
rithms outlining continuity of care. These will potentially
involve emergency extra-terrestrial care at the point of
injury, stabilization for space-evacuation, space transport
(involving challenges of ascent, entry and landing), terres-
trial land site resuscitation and treatment, terrestrial trans-
portation, and eventually definitive care of all injuries.
Although delivering definitive medical care in space
would obviate many of the transportation related dangers,
it would also greatly increase capability requirements.
More specifically, long duration space experience may
involve intervals in LEO aboard the ISS, traveling to the
Moon or Mars, and/or residence in the reduced gravity
environments of either destination. Currently on the ISS,
prolonged times for deployment of stowed equipment
would further complicate any emergent resuscitation.
LEO, and possibly the Moon, would however offer the
potential for telemedicine support, damage control inter-
ventions, and definitive therapy via either a pre-config-
ured care facility, or damage control evacuation to earth.
Although the original plans for serious injuries in LEO
specified an early return to earth, this paradigm is compli-
cated by the limited life-span of the Space Shuttle Pro-
gram, as well as the cancellation of a dedicated emergency
crew return vehicle [18]. As a result, ECMs will likely
require complete autonomy and redundancy.

In addition to the mission goals, potential construction
on a Martian or Lunar surface, as well as the area of surface
exploration (extra-vehicular activity (EVA)) will be critical
parameters that influence the nature of trauma and the
potential for survival. Penetrating injuries from microme-
teorites may occur when an astronaut is exposed outside
the spacecraft. Such trauma might be associated with fail-
ure of the space-suit, resulting in either a flash fire or
explosive decompression to the vacuum of space. In either
situation the chances of survival would be nil [6,19]. More
probable is the potential for crush-type injuries[6,20,21].
Although objects are weightless in space, they retain mass
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and can therefore generate significant forces [22]. In the
reduced gravity environments of the Moon (1/6 g) or
Mars (1/3 g), mass can appear deceptively light. This
increases the susceptibility to inadvertent acceleration of
objects. The use of helmets and hardened torso space-suits
might reduce the likelihood and severity of serious thora-
coabdominal injuries [20]. They would also induce
chronic musculoskeletal strain, over-use injuries, and fail
to protect against appendicular skeletal injuries however.
Both NASA-Mir and EVA neutral buoyancy training expe-
riences noted frequent small traumatic injuries and over-
use syndromes especially of the upper extremities [11,23].

The Physiology and Pathophysiology of Injury in Space
After a prolonged exposure to weightlessness, the injured
astronaut will be at a physiologic disadvantage compared
to patients on earth [6,21]. Changes likely to impair their
ability to withstand injury [4] include: reductions in circu-
lating blood volume, reduced red cell mass, cardiac atro-
phy, dysrythmias, reduced cardiac output, alterations in
vascular tone and neuroendocrine function, loss of the
protective bony mass, and possible immune suppression
[3,4,7,24-28]. Fluid redistribution and diuresis result in a
10–23% volume reduction (equivalent to Class I ATLS
hemorrhage on earth) even before the occurrence of an
injury [6,22,24]. As a result, cardiac reserve is reduced and
the autonomic nervous system is reset with greater beta
receptor sensitivity. This could potentially prevent appro-
priate vasoconstriction[6,20,24]. Limited evidence also
indicates that basic wound healing is impaired [29]. More
specifically, histologic and tensiometric data from rat
abdominal incisions performed during shuttle flights
reveal greater inflammatory responses, increased fibropla-
sia, abnormal collagen deposition, and reduced stress
loading capacity.

Loss of bony density during weightlessness appears pro-
portional to the length of the flight and fails to display a
self limiting plateau [30]. This may greatly increase the
risk of fractures. In addition to appendicular fractures,
degradation of the thoracic cage is concerning because it
provides significant protection to vital viscera. On earth,
fractures are the primary cause of more than half of all
admissions for trauma [31]. While not typically life-
threatening by themselves, serious long-bone fractures
would be disastrous for a mission. Bone healing in space
reveals impaired callus formation and reduced angiogen-
esis [32,33]. In true weightlessness bony integrity might
not be absolutely required for ambulation however.
Immobilization could also be obtained using simple air
or thermoplastic casts/splints [22]. Whether the lack of
gravitational loading would lead to mal- or disunion
remains unknown. The risk of fat emboli with movement
of unfixed bones is unclear as well. Without advanced
techniques for bony fixation and gravitational loading for

normal bone healing, even previously healthy astronauts
may be permanently disabled.

The internal atmosphere of a space vehicle is likely to be
populated by an increased number of virulent microbio-
logical flora when compared to earth. Spaceflight investi-
gations have reported that bacterial growth appears
greater in weightlessness compared to terrestrial controls
[34]. Thicker cell walls with higher minimal inhibitory
requirements for antibiotics in common pathological bac-
teria have also been encountered [35,36]. Bacteria col-
lected on the crew of the Apollo-Soyuz Project exhibited
increased antibiotic resistances compared to pre and post-
flight [37]. Whether spacecraft and their inhabitants can
be adequately shielded from radiation and its effects on
rapidly proliferating cells also remains unknown [38].

Trauma Care in Space: A Unique Pre-Hospital Paradigm 
and a Test-Bed for Novel Life-Saving Technologies
In the United States, rural trauma mortality is up to 50%
greater than in urban settings [39,40]. ECMs are expected
to multiply this geographic differential several million
times. With diminished physiologic health, more numer-
ous and virulent microbiologic pathogens, potentially
inexperienced care providers, and limited equipment, the
outcome of serious trauma in space may seem to be a fore-
gone conclusion. Fortunately the nature of these missions
allows for medical preparation in a manner most prehos-
pital care does not. Interplanetary space exploration rep-
resents the ultimate remote location, but one in which the
most advanced medical technology of our society might
be pre-positioned.

The distinct challenges inherent in providing medical care
in space have not only led to unique solutions for space
medicine, but also for terrestrial healthcare as well
[41,42]. The biomedical support provided to the early
manned exploration of space was a momentous achieve-
ment that has benefited countless patients requiring phys-
iologic monitoring in terrestrial intensive care units [3].
The presence of an advanced ultrasound (US) machine
onboard the ISS may provide another series of terrestrial
spin-offs [43-45]. Currently the ISS has no radiography,
computed tomography (CT), or magnetic resonance (MR)
imaging, but does have US capability. This paradigm has
driven a series of innovative investigations into the capa-
bilities of sonographic techniques to aid the critically
injured in space [43,45-48]. It is likely that future needs
will also prompt the rapid development of other medical
technologies.

Space Physicians and Training Requirements for the Space 
Surgeon
The Crew Medical Officer (CMO) onboard the ISS is not
currently required to be a physician, and is typically a spe-
Page 3 of 11
(page number not for citation purposes)



Journal of Trauma Management & Outcomes 2009, 3:4 http://www.traumamanagement.org/content/3/1/4
cialist in a non-medical discipline with 60 hours of medi-
cal training [4]. While a broadly trained surgical specialist
would be the obvious choice to deliver complex interven-
tions in trying circumstances, there is no guarantee that a
surgeon, or even a physician will be selected for future
long duration missions. The CMO in such a scenario will
be a mission specialist with other non-medical duties that
might include psychological support and evaluation. This
individual will also be vulnerable to disease and injury
themselves, and will require an assistant to address more
complex medical problems. The initial training and ongo-
ing maintenance of competence of the medical/surgical
officer is of paramount importance. Although still contro-
versial, a broad range of competences incorporating many
of today's specialties will be required. While the best pre-
requisite training and planned curriculum of space medi-
cal/surgical training are unclear, they will largely be deter-
mined by the capabilities planned for a particular
mission. If telemedical support is available, on-board
technical skills will have greater value than knowledge,
given the current ease of transmitting information [6].
Active research and development in telementoring and
telerobotics is currently addressing this disparity [46,49].
In missions beyond LEO, tele-support will be extremely
limited. As a result, acute medical care will need to be
entirely autonomous.

The Initial Resuscitation of Traumatic Injury in Space
The initial resuscitation of any critically injured patient is
guided by ATLS, which addresses the most immediate
threats to life first. This occurs whether the victim is in the
simplest rural hospital or the largest tertiary care centre. It
is generally perceived that applying basic ATLS principles
in space is largely possible even with the limited resources
currently aboard the ISS [50]. Securing an adequate airway
is a critical first step in any resuscitation. It has been
shown in parabolic flight that definitive control of the air-
way is possible via endotracheal intubation, insertion of a
laryngeal mask, and even with a tracheostomy [50]. A
focused sonographic examination of the chest after intu-
bation offers a validated method of remotely and/or auto-
matically confirming correct endotracheal tube
positioning [51,52].

Pneumothoraces (PTXs) are the most common serious
intra-thoracic injury following blunt trauma [53,54] and
are a notable cause of preventable death for which rela-
tively simple interventions may be life-saving [55-58].
PTXs are also a condition that may be exacerbated by the
hypobaric stresses associated with EVA [7,57]. Tension
pneumothoraces have been easily decompressed with
both needle and tube thoracostomies in parabolic flight
[4,50]. In many cases however, it may be more difficult to
detect hemo-pneumothoraces than to actually treat them.
This is certainly true aboard the ISS, where less experi-

enced care providers will attempt auscultation of breath
sounds in an environment with very loud ambient
noise[18,44,59]. The problematic issue of PTXs demon-
strates a case where an operational need stimulated a basic
and applied research program that investigated the utility
of US in detecting the presence of PTXs via abnormal pleu-
ral movements [44,60]. Because PTXs are a pleural based
disease, US has proven remarkably sensitive, both in
weightlessness and terrestrially. This fact is now receiving
additional attention in terrestrial trauma care as well
[59,61-63]. Ultrasound is a very user-dependant tool, and
one in which CMOs are unlikely to be highly proficient.
Recognizing this reality, Dulchavsky and colleagues have
created a research program to enable minimally trained
care providers to use US autonomously or with remote
guidance [43,45,64].

Although increasingly controversial, fluid administration
has long been considered an integral part of most initial
resuscitations [21,65]. Based on parabolic flight experi-
ence, both large volume and titrated constant fluid infu-
sions should be easily administered in weightlessness
[4,47]. This requires degassed solutions administered
with constant pressure infusions [4,47]. Severe injuries
(e.g. burns) would quickly exhaust on-board crystalloid
fluids however, necessitating the capability for the on-
board generation of medically suitable fluids from proc-
essed water.

Hemorrhage control in space
All of the previously mentioned basic resuscitative tech-
niques are within the clinical capabilities of the CMO
skill-set. Unfortunately, arresting hemorrhage is far more
critical than administering fluids however. Excess fluid
dilutes clotting proteins, exacerbates bleeding, and
induces hypothermia. The easiest source of bleeding to
address should be external or compressible hemorrhage.
In operational settings, this is not always a simple
endeavor. Even in recent military conflicts, many healthy
soldiers have bled to death from wounds that should have
been easily controlled. The simplest and safest maneuver
is direct pressure [66]. Tourniquets are important in oper-
ational settings and can be used temporarily while other
resources are activated [20,67,68]. More effective band-
ages and dressings for hemorrhage control have also been
developed in the past decade [69-72]. Tissue sealant band-
ages, with ingredients very similar to fibrin glue, allow sig-
nificantly less blood loss compared to both standard
gauze [73].

Truncal Hemorrhage
A current weakness in the commitment to life-saving
trauma interventions for injured astronauts is addressing
the potential for intracavitary hemorrhage control. This
most commonly implies abdominal or thoracic surgery to
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control internal bleeding. Unfortunately, in 99% of civil-
ian hemorrhagic deaths, external pressure is insufficient
because the site of bleeding is truncal or non-compressi-
ble [74]. On earth, these incidents have been labeled as
the leading cause of potentially preventable, injured-
related death world wide [75]. They account for 80% of
early hospital deaths, and are most frequently abdominal
in origin [76]. Sauaia and colleagues examined all trauma
deaths in Denver and found that while brain injuries were
most frequent (42%), they were followed closely by hem-
orrhage (39%)[16]. A simple extrapolation suggests that if
head injuries were not encountered in a space setting (i.e.
hardened helmets are worn for all EVAs), cavitary hemor-
rhage would constitute 76% of all deaths.

Sites of massive internal hemorrhage may be intrapleural,
intraperitoneal, and/or retroperitoneal. On earth, the use
of US to quickly localize such bleeding has become stand-
ard practice [77-79]. Studies in both parabolic flight and
true space suggest that both thoracic and abdominal
blood will remain quickly detectable in weightlessness
with accuracy. Controlled porcine studies in parabolic
flight revealed that abdominal sonography appears at
least as sensitive for the detection of intraperitoneal and
intrathoracic fluid in weightlessness. This is presumably
related to the enhanced importance of surface tension
forces in determining intra-abdominal fluid behavior in
the absence of gravity [47,80,81].

Non-Operative Management
The management of many serious thoracoabdominal
injuries has changed radically over the last several decades
with a progression from routine exploration to careful
observation [82]. Although accurate imaging on earth
supports this approach in many cases, these injuries
should always be managed in a setting with immediate
access to critical care and operative abilities [82]. When
non-operative management is unsuccessful it is usually
because of early recurrent hemorrhage, or the late forma-
tion of bilomas, urinomas, asbcesses, or pseudoaneu-
rysms. Many of these delayed complications can be
successfully treated with percutaneous treatments. This
procedure has been demonstrated to be feasible during
parabolic flight [83]. Because of the adoption of these
non-operative strategies, surgical intervention is typically
triggered by ongoing hemorrhage manifested as physio-
logic failure or shock. As a result, these advances have
relied on the ready availability of experienced surgeons
with the capabilities to intervene if a patient's clinical con-
dition worsens [6,84]. In austere environments such as
space, it may be desirable to intervene in a controlled
fashion prior to such gross physiological instability.
Implicit in such a decision is the availability of safe and
effective anesthetics. Inhalational anesthetics have theo-
retical limitations in space related both to weightless and

the use of gasses in a small closed-loop environment [6].
Completely intravenous anesthetic regimes have been
used in parabolic flight, but would require yet another
CMO skill-set.

Predicting the need for surgical intervention
Early bleeding or peritonitis may necessitate surgery given
the lack of critical care in space. Satava has stressed the
information systems integration benefits of total body
imaging (holomers)[85]. While CT & MRI clearly yield
superior images, any 3-dimensional (3D) imaging tech-
nique supported by decision support software might pre-
dict the outcome of an injury based on the real-time
assessment bleeding. Hoyt estimated survival windows
reliant on terrestrial physiology and hemorrhage volumes
to be 2 hours based on 25 mls of bleeding per minute. If
bleeding exceeded 100 mls/minute, death would ensure
within 30 minutes [86]. 3D US is a technical development
that displays an improved ability to quantify volumes
compared to 2D [87,88]. It might also be combined with
US contrast media to follow real-time hemorrhage [89].
Accounting for altered space physiology, on-board com-
puters could notify the CMO when death would be inevi-
table without intervention. This would simplify an
otherwise agonizing decision.

Surgical interventions
The evidence suggests that standard surgical approaches
would be possible in weightlessness as long as the key
principles of restraint of the operators, subject, and equip-
ment were followed [4,90,91]. A number of investigators
have evaluated various surgical preparation and proce-
dures in the weightlessness of parabolic flight by staging
procedures to conform to the brief time windows. Proce-
dures that have been evaluated include surgical site prep-
aration, opening and closing wounds, laparotomies,
repair of major abdominal vascular injuries, excision of
the adnexae, observing the behavior of hepatic, splenic,
renal and renal-vascular injuries [22,47,91-93], as well as
the microvascular repair of rodent arteries and nerves
[94].

A small number actual surgical procedures have been per-
formed in the true space of orbital flight. Although dissec-
tions were performed aboard the STS-58 Spacelab Life
Sciences mission in 1993, the most complex operations
occurred during the 1998 Neurolab STS-90 Life Sciences
mission. To gain an improved understanding of nervous
system development, complex procedures included the
administration of general anesthesia, hemostasis, control
of surgical fluids, operator restraint, and manipulation of
surgical instruments [95,96]. These investigations remain
the pinnacle of actual surgical technique in true space.
None of the subjects were human, nor required nursing
care back to full mission critical status however. This
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would obviously be crucial for the success of any long-
duration space mission. In an ECM, any requirement for
convalescence and rehabilitation will also be a critical
concern that should be considered in any treatment algo-
rithm [6].

Minimally invasive surgery
Minimally invasive surgical (MIS) techniques utilize the
general principles of minimizing access incisions and
completing the operative procedure within a patients'
internal cavities [97]. MIS for trauma in space has been
found to be feasible in weightlessness during parabolic
flight[28,31]. Potential benefits include minimizing post-
operative morbidity, shielding the cabin environment
from biological components, protecting the patient from
environmental particulates, maintaining thermal stabil-
ity, and facilitating blood collection and autotransfusion.
Contrary to previous predictions, the ability to perform
laparoscopy in weightlessness did not appear to be any
more difficult than in the 1-g environment [98,99]. Fur-
thermore, the abdominal cavity appeared to change from
a flattened oval to a rounded shape. This created more vol-
ume to operate. MIS has therefore been proposed as a
potential option to reduce surgical morbidity in space
[100,101]. Investigators have also considered potential
techniques to reduce the skill-level required for the deliv-
ery of MIS in operational settings. Broderick and col-
leagues [100] evaluated simulated hand-assisted
laparoscopy in parabolic flight. Dulchavsky has also
recently evaluated the potential for telementored non-sur-
geons to perform simple laparoscopic drainage proce-
dures in parabolic flight using mini-laparoscopes to
further reduce surgical injury.

Unanswered Questions Regarding the Safety of MIS in 
Prolonged Weightlessness
Despite the potential advantages to performing standard
laparoscopy, significant safety and practicality concerns
for these techniques in a closed space-craft environment
remain. Even in tertiary care centers, MIS still remains lim-
ited in scope for the management of acute trauma
[102,103]. It is also fundamentally unclear if an injured
astronaut could tolerate the increase in intra-abdominal
pressure caused by introducing carbon dioxide gas associ-
ated with MIS [104]. Many adverse physiologic conse-
quences of raised intra-abdominal pressure have recently
been appreciated in the critically ill [105-107]. As a result,
physicians routinely attempt to avoid this condition in
terrestrial practice by leaving the abdominal compartment
open [108,109]. Considering that even healthy astronauts
will have diminished blood volumes and cardiac decondi-
tioning [6], there are serious concerns that injured or sep-
tic hypovolemic astronauts could tolerate the physiologic
stresses of laparoscopy [104].

Gasless Laparoscopy
Gasless laparoscopy or the performance of intra-abdomi-
nal MIS without positive pressure insufflation is of partic-
ular interest for space scientists. On earth, "abdominal
wall lift devices" have been used to eliminate the need for
gas insufflation [110]. These devices have not gained prac-
tical acceptance due to limitations on the resultant
domain. Limited experiences in parabolic flight suggested
that spontaneous abdominal wall changes occurred in
weightlessness, with an inherent increase in the available
domain even without insufflation [99]. Unfortunately,
this change in abdominal wall shape did not equate to a
functional window during laparoscopic surgery in para-
bolic flight [111]. This was primarily because the intra-
peritoneal viscera "floated" within the abdomen and
therefore reduced the operating domain.

The Damage Control Philosophy
Although MIS has many theoretical benefits, early open
exploratory surgery in space may be necessitated by cata-
strophic conditions such as shock or septic syndrome
prior to a specific diagnosis. As early as 1983, a council of
trauma surgeons, space physicians, and biomedical engi-
neers identified the ability to perform laparotomy as the
minimum desirable surgical capability to save lives before
transfer to earth [112]. Damage control (DC) surgery
refers to a philosophy of completing only the most neces-
sary components of a procedure via the simplest methods.
This technique is used to address problems beyond either
the patient's physiologic reserve, or the "local capabilities"
of a care setting [113,114]. Fortunately, DC techniques are
technically "easier" than most formal surgery [113,115].
Placing "packs" around bleeding solid organs and leaving
the abdomen "open" are the most basic elements of DC.
While psychologically daunting, incising the anterior
abdominal wall to access the peritoneal cavity is techni-
cally simple. It may also convert non-compressible bleed-
ing into directly compressible visceral hemorrhage. Non-
physicians have reportedly performed this successfully
[116]. Fibrin glue, or tissue sealant has been also been for-
mulated as a foam which can be easily administered by
non-experts. Foam and sealant dressings have been found
to be more effective than standard surgical packing in int-
racavitary bleeding [117].

The DC philosophy also extends to orthopedic injuries.
These techniques emphasize the early fixation of long-
bones using external fixators (vs. internal). They are sim-
ple, and rapid with minimal physiologic stress, and
reduced anesthesia requirements [118-120]. While they
are considered an interim step towards complicated inter-
nal fixation on earth, they might allow mobilization in a
zero or reduced gravity environment. Diagnosis and real-
time anatomic reduction of long bone fractures has been
demonstrated with US [121-123]. Film-less radiography is
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another option that uses an inflatable arm for beam ori-
entation [124].

Reality check: Nursing and Recovery in Space
The DC approach to severe trauma has tremendous
appeal and potential utility for evacuating a seriously
injured astronaut from LEO. Although it might also be
applicable to a lunar mission, DC would be impractical
during a mission to Mars where return to earth is impos-
sible. In such a setting, managing an open abdomen in
space would create potentially insurmountable medical,
logistical, and psychological problems. On earth, the pro-
longed use of intraperitoneal packs is itself associated
with greater morbidity and mortality when the duration
exceeds 72 hours [125,126]. This is likely to be a greater
problem in space with increased microbial virulence and
human immune suppression.

Vascular Access and Intra-luminal Interventions
Accessing vascular pathology via an intra-luminal route is
revolutionizing care in vascular surgery, cardiology, and
trauma. Access to the central circulation would also allow
optimized hemodynamic measurements, hemodynamic
support, interventional angiographic guided therapies,
and provide the most efficient location to administer
pharmacologic therapy. Because of the numerous poten-
tial complications related to central vascular access
(including misinterpretation of measurements), this
intervention should ideally be automated. Although Dop-
pler guided needles have been available for a decade
[127], fully automated vascular target identification using
smart ultrasound-guided "bibs" are in development
[128]. In the future, full robotic control may be possible.

Early measurement and correction of reduced central
venous pressures has been recommended before adminis-
tering anesthetics in space, as well as in the early interven-
tion of septic shock on earth [24,129]. With central
venous access, vasopressor and inotropic medications that
may be required in the treatment of space-altered cardio-
vascular physiology may be given with an improved safety
profile. Heparin bonded extracorporeal circuits placed
after multi-system trauma appear safe for both rapid
rewarming [120], and providing hemodynamic support
[131] after severe trauma. Hemorrhage control via the
arterial system in the form of interventional radiology is
now a standard approach to surgically inaccessible bleed-
ing. As a result, it is now being used considerably earlier
for injured patients [132,133]. An autonomous and image
guided robotic capability would be highly desirable.

Pharmacological adjuncts
Even with generous administration of blood products,
coagulopathy is often a determining factor in survival
after injury [134]. If blood products are unavailable in

space, pharmacologic adjuncts (i.e. "trauma cocktail")
may play a significant role. Potential adjuncts include
vasopressin, as well as anti-fibrinolytics such as aprotinin,
transexamic acid and recombinant Factor VIIa
[20,21,135].

Surgical robotics and resuscitative surgery in space
Although not broadly accepted, the use of surgical robots
has become common in certain subspecialties. Current
robots often add time to procedures and require addi-
tional power while increasing fidelity, precision, and the
potential for tele-operation [136]. Ongoing investigations
have shown the feasibility of operating across continents
and to undersea space analogue environments [49,137].
While these techniques might be valuable for LEO, they
would be impractical for ECMs due to the great distances
between earth and even our closet planetary neighbor
(Mars). This would entail round-trip electronic delays
from 8 to 40 minutes [6,138]. As a result, any robot in
space would require guidance either by an experienced
surgeon, or to be autonomous with image-guidance. It is
uncertain which technology will ultimately provide the
optimal balance of image-fidelity, reliability, minimal-
mass, and ease of operation, but CT scan, MRI, and ultra-
sound are all potential modes. Functional MRI has
already been guided in real-time with concurrent parame-
ter control and automated slice positioning/tracking
[139].

Suspended Animation: The Ultimate Paradigm Shift for 
Trauma Care
The logistical realities on an ECM remain extensive and
possibly unrealistic with regards to surviving complex
injuries. In such a reality, euthanasia will need to be dis-
cussed and understood. As emphasized, all currently
accepted strategies for preventing death after major
trauma focus on quickly restoring blood flow to minimize
both tissue ischemia and reperfusion injury. Recent devel-
opments in our understanding of the basic science of sus-
pended animation (SA) hint at a completely different
approach. SA has been defined as the therapeutic induc-
tion of a state of tolerance to temporary complete systemic
ischemia [140]. This results in a dramatic reduction in
both energy production (metabolism) and energy con-
sumption (cellular activity) [141]. More broadly, this con-
cept involves removing oxygen from an injured person to
preserve cellular integrity and allowing either delayed
repair or simply preservation [141]. Significant research
has been invested to identify potential SA techniques. Pro-
found hypothermia using extracorporeal circulation has
been successful in keeping severely injured dogs pulseless
for 2 hours before returning them to normal function via
resuscitation [142-144]. The obvious limitation is the
need for a cardiac bypass pump to rapidly induce ultra-
profound hypothermia (5°C). If major vascular access
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were available during an ECM this might offer the oppor-
tunity to quickly cool a patient, providing a window for
multiple virtual reality rehearsals prior to an on-board
repair in a bloodless field.

Hydrogen sulfide is a specific, reversible inhibitor of oxi-
dative phosphorylation, that profoundly inhibits the met-
abolic rate and depresses the core body temperature of
mammals [145]. It reduces the metabolism of mice by
90% after six hours without inducing obvious behavioral
or functional problems when reversed [145]. If this
approach could be safely extended for sufficiently long
periods in human astronauts, on-board medical care
would be greatly simplified. As a result, all major pathol-
ogy would be "stored and forwarded" to the eventual
return to earth. Multiple casualties or illnesses impacting
the ability of the crew to manage the mission are an obvi-
ous limitation to this strategy.

Conclusion
Given the risks and isolation inherent in long duration
spaceflight, a clever surgeon and/or surgical capability will
be required onboard a Mars exploration vessel. This is
essential because telemedicine is fundamentally limited
by the speed of light. Although not yet technologically
available, the operator does not have to be human if an
image guided robot were present. In the mean time, a
broadly-trained surgically capable emergency/critical care
specialist with innate capabilities to problem-solve and
improvise would be desirable as a CMO. An ECM will
present a truly unique paradigm, unlike any other medical
setting on earth. It will be the ultimate remote setting, and
hopefully one in which the most advanced of our socie-
ties' technologies can be pre-positioned to safeguard pre-
cious astronaut lives. Like so many previous space-related
technologies, these developments will also greatly
improve terrestrial care on earth.
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